Identifying topologically associating domains and subdomains by Gaussian Mixture model And Proportion test
Spatial organization of the genome plays a crucial role in regulating gene expression. Here the authors introduce GMAP, the Gaussian Mixture model And Proportion test, to identify topologically associating domains and subdomains in Hi-C data.
Guardado en:
Autores principales: | Wenbao Yu, Bing He, Kai Tan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/324439f719804898a27e1bc7c4641b2d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Proportional Changes in Cognitive Subdomains During Normal Brain Aging
por: Yauhen Statsenko, et al.
Publicado: (2021) -
Tsallis generalized entropy for Gaussian mixture model parameter estimation on brain segmentation application
por: Mehran Azimbagirad, et al.
Publicado: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
Discovering key transcriptomic regulators in pancreatic ductal adenocarcinoma using Dirichlet process Gaussian mixture model
por: Sk Md Mosaddek Hossain, et al.
Publicado: (2021) -
Cement Paste Mixture Proportioning with Particle Packing Theory: An Ambiguous Effect of Microsilica
por: Paweł Niewiadomski, et al.
Publicado: (2021)