Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).

Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a diseas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sung Sun Yim, Hyun Bae Bang, Young Hwan Kim, Yong Jae Lee, Gu Min Jeong, Ki Jun Jeong
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/32686144334b45a7bc883dbfe17b8458
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:32686144334b45a7bc883dbfe17b8458
record_format dspace
spelling oai:doaj.org-article:32686144334b45a7bc883dbfe17b84582021-11-25T05:57:03ZRapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).1932-620310.1371/journal.pone.0108225https://doaj.org/article/32686144334b45a7bc883dbfe17b84582014-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0108225https://doaj.org/toc/1932-6203Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D) values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6)). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.Sung Sun YimHyun Bae BangYoung Hwan KimYong Jae LeeGu Min JeongKi Jun JeongPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 10, p e108225 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sung Sun Yim
Hyun Bae Bang
Young Hwan Kim
Yong Jae Lee
Gu Min Jeong
Ki Jun Jeong
Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).
description Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show K(D) values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼ 10(6)). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.
format article
author Sung Sun Yim
Hyun Bae Bang
Young Hwan Kim
Yong Jae Lee
Gu Min Jeong
Ki Jun Jeong
author_facet Sung Sun Yim
Hyun Bae Bang
Young Hwan Kim
Yong Jae Lee
Gu Min Jeong
Ki Jun Jeong
author_sort Sung Sun Yim
title Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).
title_short Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).
title_full Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).
title_fullStr Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).
title_full_unstemmed Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS).
title_sort rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (facs).
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/32686144334b45a7bc883dbfe17b8458
work_keys_str_mv AT sungsunyim rapidisolationofantibodyfromasynthetichumanantibodylibrarybyrepeatedfluorescenceactivatedcellsortingfacs
AT hyunbaebang rapidisolationofantibodyfromasynthetichumanantibodylibrarybyrepeatedfluorescenceactivatedcellsortingfacs
AT younghwankim rapidisolationofantibodyfromasynthetichumanantibodylibrarybyrepeatedfluorescenceactivatedcellsortingfacs
AT yongjaelee rapidisolationofantibodyfromasynthetichumanantibodylibrarybyrepeatedfluorescenceactivatedcellsortingfacs
AT guminjeong rapidisolationofantibodyfromasynthetichumanantibodylibrarybyrepeatedfluorescenceactivatedcellsortingfacs
AT kijunjeong rapidisolationofantibodyfromasynthetichumanantibodylibrarybyrepeatedfluorescenceactivatedcellsortingfacs
_version_ 1718414331113111552