The extremal function of interpolation formulas in W2(2,0)  space

One of the main problems of computational mathematics is the optimization of computational methods in functional spaces. Optimization of computational methods are well demonstrated in the problems of the theory of interpolation formulas. In this paper, we study the problem of constructing an optimal...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boltaev, A.K., Shadimetov, Kh.M., Nuraliev, F.A.
Formato: article
Lenguaje:EN
RU
Publicado: KamGU by Vitus Bering 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/326b8545660549a490862a9083227437
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:One of the main problems of computational mathematics is the optimization of computational methods in functional spaces. Optimization of computational methods are well demonstrated in the problems of the theory of interpolation formulas. In this paper, we study the problem of constructing an optimal interpolation formula in a Hilbert space. Here, using the Sobolev method, the first part of the problem is solved, i.e., an explicit expression of the square of the norm of the error functional of the optimal interpolation formulas in the Hilbert space W2(2,0) is found.