The extremal function of interpolation formulas in W2(2,0) space
One of the main problems of computational mathematics is the optimization of computational methods in functional spaces. Optimization of computational methods are well demonstrated in the problems of the theory of interpolation formulas. In this paper, we study the problem of constructing an optimal...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN RU |
Publicado: |
KamGU by Vitus Bering
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/326b8545660549a490862a9083227437 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | One of the main problems of computational mathematics is the optimization of computational methods in functional spaces. Optimization of computational methods are well demonstrated in the problems of the theory of interpolation formulas. In this paper, we study the problem of constructing an optimal interpolation formula in a Hilbert space. Here, using the Sobolev method, the first part of the problem is solved, i.e., an explicit expression of the square of the norm of the error functional of the optimal interpolation formulas in the Hilbert space W2(2,0) is found. |
---|