A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments
Abstract Tidal-flat sediments harbor a diverse array of sulfate-reducing bacteria. To isolate novel sulfate-reducing bacteria and determine their abundance, a tidal-flat sediment sample collected off Ganghwa Island (Korea) was investigated using cultivation-based and culture-independent approaches....
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32737d019e884343aa91b800f222b81d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:32737d019e884343aa91b800f222b81d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:32737d019e884343aa91b800f222b81d2021-12-02T18:01:40ZA sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments10.1038/s41598-021-99469-52045-2322https://doaj.org/article/32737d019e884343aa91b800f222b81d2021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99469-5https://doaj.org/toc/2045-2322Abstract Tidal-flat sediments harbor a diverse array of sulfate-reducing bacteria. To isolate novel sulfate-reducing bacteria and determine their abundance, a tidal-flat sediment sample collected off Ganghwa Island (Korea) was investigated using cultivation-based and culture-independent approaches. Two Gram-stain-negative, strictly anaerobic, rod-shaped, sulfate-reducing bacteria, designated IMCC35004T and IMCC35005T, were isolated from the sample. The two strains reduced sulfate, sulfite, elemental sulfur, thiosulfate, Fe(III) citrate, and Mn(IV) oxide by utilizing several carbon sources, including acetate. The 16S rRNA gene amplicon sequencing revealed that the tidal-flat sediment contained diverse members of the phylum Desulfobacterota, and the phylotypes related to IMCC35004T and IMCC35005T were < 1%. The two strains shared 97.6% similarity in 16S rRNA gene sequence and were closely related to Desulfopila aestuarii DSM 18488T (96.1–96.5%). The average nucleotide identity, level of digital DNA–DNA hybridization, average amino acid identity, and percentages of conserved proteins determined analyzing the whole-genome sequences, as well as the chemotaxonomic data showed that the two strains belong to two novel species of a novel genus. Additionally, genes related to dissimilatory sulfate reduction were detected in the genomes of the two strains. Unlike the genera Desulfopila and Desulfotalea, IMCC35004T and IMCC35005T contained menaquinone-5 as the major respiratory quinone. Collectively, IMCC35004T and IMCC35005T were concluded to represent two novel species of a novel genus within the family Desulfocapsaceae, for which the names Desulfosediminicola ganghwensis gen. nov., sp. nov. (IMCC35004T = KCTC 15826T = NBRC 114003T) and Desulfosediminicola flagellatus sp. nov. (IMCC35005T = KCTC 15827T = NBRC 114004T) are proposed.Jaeho SongJuchan HwangIlnam KangJang-Cheon ChoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jaeho Song Juchan Hwang Ilnam Kang Jang-Cheon Cho A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
description |
Abstract Tidal-flat sediments harbor a diverse array of sulfate-reducing bacteria. To isolate novel sulfate-reducing bacteria and determine their abundance, a tidal-flat sediment sample collected off Ganghwa Island (Korea) was investigated using cultivation-based and culture-independent approaches. Two Gram-stain-negative, strictly anaerobic, rod-shaped, sulfate-reducing bacteria, designated IMCC35004T and IMCC35005T, were isolated from the sample. The two strains reduced sulfate, sulfite, elemental sulfur, thiosulfate, Fe(III) citrate, and Mn(IV) oxide by utilizing several carbon sources, including acetate. The 16S rRNA gene amplicon sequencing revealed that the tidal-flat sediment contained diverse members of the phylum Desulfobacterota, and the phylotypes related to IMCC35004T and IMCC35005T were < 1%. The two strains shared 97.6% similarity in 16S rRNA gene sequence and were closely related to Desulfopila aestuarii DSM 18488T (96.1–96.5%). The average nucleotide identity, level of digital DNA–DNA hybridization, average amino acid identity, and percentages of conserved proteins determined analyzing the whole-genome sequences, as well as the chemotaxonomic data showed that the two strains belong to two novel species of a novel genus. Additionally, genes related to dissimilatory sulfate reduction were detected in the genomes of the two strains. Unlike the genera Desulfopila and Desulfotalea, IMCC35004T and IMCC35005T contained menaquinone-5 as the major respiratory quinone. Collectively, IMCC35004T and IMCC35005T were concluded to represent two novel species of a novel genus within the family Desulfocapsaceae, for which the names Desulfosediminicola ganghwensis gen. nov., sp. nov. (IMCC35004T = KCTC 15826T = NBRC 114003T) and Desulfosediminicola flagellatus sp. nov. (IMCC35005T = KCTC 15827T = NBRC 114004T) are proposed. |
format |
article |
author |
Jaeho Song Juchan Hwang Ilnam Kang Jang-Cheon Cho |
author_facet |
Jaeho Song Juchan Hwang Ilnam Kang Jang-Cheon Cho |
author_sort |
Jaeho Song |
title |
A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
title_short |
A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
title_full |
A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
title_fullStr |
A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
title_full_unstemmed |
A sulfate-reducing bacterial genus, Desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
title_sort |
sulfate-reducing bacterial genus, desulfosediminicola gen. nov., comprising two novel species cultivated from tidal-flat sediments |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/32737d019e884343aa91b800f222b81d |
work_keys_str_mv |
AT jaehosong asulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT juchanhwang asulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT ilnamkang asulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT jangcheoncho asulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT jaehosong sulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT juchanhwang sulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT ilnamkang sulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments AT jangcheoncho sulfatereducingbacterialgenusdesulfosediminicolagennovcomprisingtwonovelspeciescultivatedfromtidalflatsediments |
_version_ |
1718378978938454016 |