The measurement, evolution, and neural representation of action grammars of human behavior
Abstract Human behaviors from toolmaking to language are thought to rely on a uniquely evolved capacity for hierarchical action sequencing. Testing this idea will require objective, generalizable methods for measuring the structural complexity of real-world behavior. Here we present a data-driven ap...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3275ee33efd74936a7aaceb83f835f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Human behaviors from toolmaking to language are thought to rely on a uniquely evolved capacity for hierarchical action sequencing. Testing this idea will require objective, generalizable methods for measuring the structural complexity of real-world behavior. Here we present a data-driven approach for extracting action grammars from basic ethograms, exemplified with respect to the evolutionarily relevant behavior of stone toolmaking. We analyzed sequences from the experimental replication of ~ 2.5 Mya Oldowan vs. ~ 0.5 Mya Acheulean tools, finding that, while using the same “alphabet” of elementary actions, Acheulean sequences are quantifiably more complex and Oldowan grammars are a subset of Acheulean grammars. We illustrate the utility of our complexity measures by re-analyzing data from an fMRI study of stone toolmaking to identify brain responses to structural complexity. Beyond specific implications regarding the co-evolution of language and technology, this exercise illustrates the general applicability of our method to investigate naturalistic human behavior and cognition. |
---|