The measurement, evolution, and neural representation of action grammars of human behavior
Abstract Human behaviors from toolmaking to language are thought to rely on a uniquely evolved capacity for hierarchical action sequencing. Testing this idea will require objective, generalizable methods for measuring the structural complexity of real-world behavior. Here we present a data-driven ap...
Guardado en:
Autores principales: | Dietrich Stout, Thierry Chaminade, Jan Apel, Ali Shafti, A. Aldo Faisal |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3275ee33efd74936a7aaceb83f835f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evolution and neural representation of mammalian cooperative behavior
por: Mengping Jiang, et al.
Publicado: (2021) -
Comparing feedforward and recurrent neural network architectures with human behavior in artificial grammar learning
por: Andrea Alamia, et al.
Publicado: (2020) -
Neural representations of honesty predict future trust behavior
por: Gabriele Bellucci, et al.
Publicado: (2019) -
Playing the piano with a robotic third thumb: assessing constraints of human augmentation
por: Ali Shafti, et al.
Publicado: (2021) -
Dictionary of Grammar
por: E. Ridge
Publicado: (2012)