Lightweight Underwater Object Detection Based on YOLO v4 and Multi-Scale Attentional Feature Fusion
A challenging and attractive task in computer vision is underwater object detection. Although object detection techniques have achieved good performance in general datasets, problems of low visibility and color bias in the complex underwater environment have led to generally poor image quality; besi...
Guardado en:
Autores principales: | Minghua Zhang, Shubo Xu, Wei Song, Qi He, Quanmiao Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32892cbc140549528f55d2098c781f1e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo
por: Qurotul Aini, et al.
Publicado: (2021) -
Mobile Eye-Tracking Data Analysis Using Object Detection via YOLO v4
por: Niharika Kumari, et al.
Publicado: (2021) -
Integrated Circuit Board Object Detection and Image Augmentation Fusion Model Based on YOLO
por: Szu-Yin Lin, et al.
Publicado: (2021) -
Configurable Hardware Core for IoT Object Detection
por: Pedro R. Miranda, et al.
Publicado: (2021) -
Klasifikasi Tingkat Ancaman Kriminalitas Bersenjata Menggunakan Metode You Only Look Once (YOLO)
por: Muhammad Abdul Hadi, et al.
Publicado: (2021)