On the use of aggregated human mobility data to estimate the reproduction number

Abstract The reproduction number of an infectious disease, such as CoViD-19, can be described through a modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact rate, where mobility data are used as proxy of average movement trends and interpersonal distances. W...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fabio Vanni, David Lambert, Luigi Palatella, Paolo Grigolini
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/329e30d2cf8842e095d5c9beff2bdf42
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The reproduction number of an infectious disease, such as CoViD-19, can be described through a modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact rate, where mobility data are used as proxy of average movement trends and interpersonal distances. We introduce a theoretical framework to explain and predict changes in the reproduction number of SARS-CoV-2 in terms of aggregated individual mobility and interpersonal proximity (alongside other epidemiological and environmental variables) during and after the lockdown period. We use an infection-age structured model described by a renewal equation. The model predicts the evolution of the reproduction number up to a week ahead of well-established estimates used in the literature. We show how lockdown policies, via reduction of proximity and mobility, reduce the impact of CoViD-19 and mitigate the risk of disease resurgence. We validate our theoretical framework using data from Google, Voxel51, Unacast, The CoViD-19 Mobility Data Network, and Analisi Distribuzione Aiuti.