Reconstructing cell cycle pseudo time-series via single-cell transcriptome data

In single-cell RNA sequencing data of heterogeneous cell populations, cell cycle stage of individual cells would often be informative. Here, the authors introduce a computational model to reconstruct a pseudo-time series from single cell transcriptome data, identify the cell cycle stages, identify c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zehua Liu, Huazhe Lou, Kaikun Xie, Hao Wang, Ning Chen, Oscar M. Aparicio, Michael Q. Zhang, Rui Jiang, Ting Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/32ab51ddb7e749bda7e9f191762097b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:32ab51ddb7e749bda7e9f191762097b3
record_format dspace
spelling oai:doaj.org-article:32ab51ddb7e749bda7e9f191762097b32021-12-02T10:47:59ZReconstructing cell cycle pseudo time-series via single-cell transcriptome data10.1038/s41467-017-00039-z2041-1723https://doaj.org/article/32ab51ddb7e749bda7e9f191762097b32017-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00039-zhttps://doaj.org/toc/2041-1723In single-cell RNA sequencing data of heterogeneous cell populations, cell cycle stage of individual cells would often be informative. Here, the authors introduce a computational model to reconstruct a pseudo-time series from single cell transcriptome data, identify the cell cycle stages, identify candidate cell cycle-regulated genes and recover the methylome changes during the cell cycle.Zehua LiuHuazhe LouKaikun XieHao WangNing ChenOscar M. AparicioMichael Q. ZhangRui JiangTing ChenNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Zehua Liu
Huazhe Lou
Kaikun Xie
Hao Wang
Ning Chen
Oscar M. Aparicio
Michael Q. Zhang
Rui Jiang
Ting Chen
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
description In single-cell RNA sequencing data of heterogeneous cell populations, cell cycle stage of individual cells would often be informative. Here, the authors introduce a computational model to reconstruct a pseudo-time series from single cell transcriptome data, identify the cell cycle stages, identify candidate cell cycle-regulated genes and recover the methylome changes during the cell cycle.
format article
author Zehua Liu
Huazhe Lou
Kaikun Xie
Hao Wang
Ning Chen
Oscar M. Aparicio
Michael Q. Zhang
Rui Jiang
Ting Chen
author_facet Zehua Liu
Huazhe Lou
Kaikun Xie
Hao Wang
Ning Chen
Oscar M. Aparicio
Michael Q. Zhang
Rui Jiang
Ting Chen
author_sort Zehua Liu
title Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
title_short Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
title_full Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
title_fullStr Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
title_full_unstemmed Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
title_sort reconstructing cell cycle pseudo time-series via single-cell transcriptome data
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/32ab51ddb7e749bda7e9f191762097b3
work_keys_str_mv AT zehualiu reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT huazhelou reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT kaikunxie reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT haowang reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT ningchen reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT oscarmaparicio reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT michaelqzhang reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT ruijiang reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
AT tingchen reconstructingcellcyclepseudotimeseriesviasinglecelltranscriptomedata
_version_ 1718396701593567232