Progresses and challenges in link prediction

Summary: Link prediction is a paradigmatic problem in network science, which aims at estimating the existence likelihoods of nonobserved links, based on known topology. After a brief introduction of the standard problem and evaluation metrics of link prediction, this review will summarize representa...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Tao Zhou
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/32c023c3d57e4e41abc8bcbdac6f6ada
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Summary: Link prediction is a paradigmatic problem in network science, which aims at estimating the existence likelihoods of nonobserved links, based on known topology. After a brief introduction of the standard problem and evaluation metrics of link prediction, this review will summarize representative progresses about local similarity indices, link predictability, network embedding, matrix completion, ensemble learning, and some others, mainly extracted from related publications in the last decade. Finally, this review will outline some long-standing challenges for future studies.