Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches
Eight new oxadiazole derivatives were designed then geometries for ground state were optimized through Density Functional Theory (DFT) at B3LYP/6-31G** level. Single electron transfer mechanism has been studied to understand the antioxidant ability of the oxadiazole derivatives. Then molecular elect...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32c4dd7a74ab41169ea07f2b0f907772 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:32c4dd7a74ab41169ea07f2b0f907772 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:32c4dd7a74ab41169ea07f2b0f9077722021-11-20T04:57:09ZExploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches1319-562X10.1016/j.sjbs.2021.08.049https://doaj.org/article/32c4dd7a74ab41169ea07f2b0f9077722021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1319562X21007385https://doaj.org/toc/1319-562XEight new oxadiazole derivatives were designed then geometries for ground state were optimized through Density Functional Theory (DFT) at B3LYP/6-31G** level. Single electron transfer mechanism has been studied to understand the antioxidant ability of the oxadiazole derivatives. Then molecular electrostatic potential and quantitative structure–activity relationship (QSAR) was probed. Additionally, we shed light on different molecular descriptors, e.g., electrophilicity(ω), electronegativity(χ), electrophilicity indices(ωi), hardness(η), softness(S) and chemical potential(μ).The smaller value of ionization potential for 5a is showing that it might be efficient antioxidant candidate. The electrophilic reactive sites in 2a, 3a, 4a, 5a and 7a derivatives might be a good choice for reactivity that would be advantageous to improve the biological activity. The polar surface area of 3a, 4a and 5a derivatives was found < 60 A2 which is enlightening that these drugs might be suitable as orally active and for brain penetration. First-principles calculations and molecular docking results revealed that 5a would lead to superior antioxidant activity.Ahmad IrfanMuhammad ImranAbdullah G. Al-SehemiAsma Tufail ShahMohamed HussienMuhammad Waseem MumtazElsevierarticleAzole derivativesAntioxidantsDensity functional theoryMolecular dockingQuantitative structure-activity relationshipBiology (General)QH301-705.5ENSaudi Journal of Biological Sciences, Vol 28, Iss 12, Pp 7416-7421 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Azole derivatives Antioxidants Density functional theory Molecular docking Quantitative structure-activity relationship Biology (General) QH301-705.5 |
spellingShingle |
Azole derivatives Antioxidants Density functional theory Molecular docking Quantitative structure-activity relationship Biology (General) QH301-705.5 Ahmad Irfan Muhammad Imran Abdullah G. Al-Sehemi Asma Tufail Shah Mohamed Hussien Muhammad Waseem Mumtaz Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches |
description |
Eight new oxadiazole derivatives were designed then geometries for ground state were optimized through Density Functional Theory (DFT) at B3LYP/6-31G** level. Single electron transfer mechanism has been studied to understand the antioxidant ability of the oxadiazole derivatives. Then molecular electrostatic potential and quantitative structure–activity relationship (QSAR) was probed. Additionally, we shed light on different molecular descriptors, e.g., electrophilicity(ω), electronegativity(χ), electrophilicity indices(ωi), hardness(η), softness(S) and chemical potential(μ).The smaller value of ionization potential for 5a is showing that it might be efficient antioxidant candidate. The electrophilic reactive sites in 2a, 3a, 4a, 5a and 7a derivatives might be a good choice for reactivity that would be advantageous to improve the biological activity. The polar surface area of 3a, 4a and 5a derivatives was found < 60 A2 which is enlightening that these drugs might be suitable as orally active and for brain penetration. First-principles calculations and molecular docking results revealed that 5a would lead to superior antioxidant activity. |
format |
article |
author |
Ahmad Irfan Muhammad Imran Abdullah G. Al-Sehemi Asma Tufail Shah Mohamed Hussien Muhammad Waseem Mumtaz |
author_facet |
Ahmad Irfan Muhammad Imran Abdullah G. Al-Sehemi Asma Tufail Shah Mohamed Hussien Muhammad Waseem Mumtaz |
author_sort |
Ahmad Irfan |
title |
Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches |
title_short |
Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches |
title_full |
Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches |
title_fullStr |
Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches |
title_full_unstemmed |
Exploration of electronic properties, radical scavenging activity and QSAR of oxadiazole derivatives by molecular docking and first-principles approaches |
title_sort |
exploration of electronic properties, radical scavenging activity and qsar of oxadiazole derivatives by molecular docking and first-principles approaches |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/32c4dd7a74ab41169ea07f2b0f907772 |
work_keys_str_mv |
AT ahmadirfan explorationofelectronicpropertiesradicalscavengingactivityandqsarofoxadiazolederivativesbymoleculardockingandfirstprinciplesapproaches AT muhammadimran explorationofelectronicpropertiesradicalscavengingactivityandqsarofoxadiazolederivativesbymoleculardockingandfirstprinciplesapproaches AT abdullahgalsehemi explorationofelectronicpropertiesradicalscavengingactivityandqsarofoxadiazolederivativesbymoleculardockingandfirstprinciplesapproaches AT asmatufailshah explorationofelectronicpropertiesradicalscavengingactivityandqsarofoxadiazolederivativesbymoleculardockingandfirstprinciplesapproaches AT mohamedhussien explorationofelectronicpropertiesradicalscavengingactivityandqsarofoxadiazolederivativesbymoleculardockingandfirstprinciplesapproaches AT muhammadwaseemmumtaz explorationofelectronicpropertiesradicalscavengingactivityandqsarofoxadiazolederivativesbymoleculardockingandfirstprinciplesapproaches |
_version_ |
1718419706424066048 |