Finding candidate drugs for hepatitis C based on chemical-chemical and chemical-protein interactions.

Hepatitis C virus (HCV) is an infectious virus that can cause serious illnesses. Only a few drugs have been reported to effectively treat hepatitis C. To have greater diversity in drug choice and better treatment options, it is necessary to develop more drugs to treat the infection. However, it is t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lei Chen, Jing Lu, Tao Huang, Jun Yin, Lai Wei, Yu-Dong Cai
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/32c50d568d85413cb950b40529441bf3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Hepatitis C virus (HCV) is an infectious virus that can cause serious illnesses. Only a few drugs have been reported to effectively treat hepatitis C. To have greater diversity in drug choice and better treatment options, it is necessary to develop more drugs to treat the infection. However, it is time-consuming and expensive to discover candidate drugs using experimental methods, and computational methods may complement experimental approaches as a preliminary filtering process. This type of approach was proposed by using known chemical-chemical interactions to extract interactive compounds with three known drug compounds of HCV, and the probabilities of these drug compounds being able to treat hepatitis C were calculated using chemical-protein interactions between the interactive compounds and HCV target genes. Moreover, the randomization test and expectation-maximization (EM) algorithm were both employed to exclude false discoveries. Analysis of the selected compounds, including acyclovir and ganciclovir, indicated that some of these compounds had potential to treat the HCV. Hopefully, this proposed method could provide new insights into the discovery of candidate drugs for the treatment of HCV and other diseases.