Universal framework for edge controllability of complex networks

Abstract Dynamical processes occurring on the edges in complex networks are relevant to a variety of real-world situations. Despite recent advances, a framework for edge controllability is still required for complex networks of arbitrary structure and interaction strength. Generalizing a previously...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shao-Peng Pang, Wen-Xu Wang, Fei Hao, Ying-Cheng Lai
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/32c88d54e3654a238f6636e24c28f4dc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Dynamical processes occurring on the edges in complex networks are relevant to a variety of real-world situations. Despite recent advances, a framework for edge controllability is still required for complex networks of arbitrary structure and interaction strength. Generalizing a previously introduced class of processes for edge dynamics, the switchboard dynamics, and exploit- ing the exact controllability theory, we develop a universal framework in which the controllability of any node is exclusively determined by its local weighted structure. This framework enables us to identify a unique set of critical nodes for control, to derive analytic formulas and articulate efficient algorithms to determine the exact upper and lower controllability bounds, and to evaluate strongly structural controllability of any given network. Applying our framework to a large number of model and real-world networks, we find that the interaction strength plays a more significant role in edge controllability than the network structure does, due to a vast range between the bounds determined mainly by the interaction strength. Moreover, transcriptional regulatory networks and electronic circuits are much more strongly structurally controllable (SSC) than other types of real-world networks, directed networks are more SSC than undirected networks, and sparse networks are typically more SSC than dense networks.