The future of digital health with federated learning
Abstract Data-driven machine learning (ML) has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data...
Guardado en:
Autores principales: | Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust, M. Jorge Cardoso |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32cc7c58a8074ffe8d62799e5fe58178 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MEMS enabled miniaturized light-sheet microscopy with all optical control
por: Spyridon Bakas, et al.
Publicado: (2021) -
Author Correction: Methods and open-source toolkit for analyzing and visualizing challenge results
por: Manuel Wiesenfarth, et al.
Publicado: (2021) -
Methods and open-source toolkit for analyzing and visualizing challenge results
por: Manuel Wiesenfarth, et al.
Publicado: (2021) -
Automatic Segmentation of Kidneys using Deep Learning for Total Kidney Volume Quantification in Autosomal Dominant Polycystic Kidney Disease
por: Kanishka Sharma, et al.
Publicado: (2017) -
Book Review: Slow Tech by Peter Ginn
por: Jonny Crocketts
Publicado: (2020)