Recurrent neural network-based acute concussion classifier using raw resting state EEG data
Abstract Concussion is a global health concern. Despite its high prevalence, a sound understanding of the mechanisms underlying this type of diffuse brain injury remains elusive. It is, however, well established that concussions cause significant functional deficits; that children and youths are dis...
Guardado en:
Autores principales: | Karun Thanjavur, Arif Babul, Brandon Foran, Maya Bielecki, Adam Gilchrist, Dionissios T. Hristopulos, Leyla R. Brucar, Naznin Virji-Babul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32cda9dbc07a4877ba9647ec30973506 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning Recurrent Neural Network for Concussion Classification in Adolescents Using Raw Electroencephalography Signals: Toward a Minimal Number of Sensors
por: Karun Thanjavur, et al.
Publicado: (2021) -
Effects of Music Intervention on Stress in Concussed and Non-Concussed Athletes
por: Camille Léonard, et al.
Publicado: (2021) -
EEG Signal Complexity Is Reduced During Resting-State in Fragile X Syndrome
por: Mélodie Proteau-Lemieux, et al.
Publicado: (2021) -
Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance
por: Jacek Rogala, et al.
Publicado: (2020) -
Characterizing Alzheimer's disease severity via resting-awake EEG amplitude modulation analysis.
por: Francisco J Fraga, et al.
Publicado: (2013)