Process Quality Evaluation Model with Taguchi Cost Loss Index

Process Capability Indices (PCIs) are not only a good communication tools between sales departments and customers but also convenient tools for internal engineers to evaluate and analyze process capabilities of products. Many statisticians and process engineers are dedicated to research on process c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chiao-Tzu Huang, Kuei-Kuei Lai
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/32d6e40d76d44cbfbd8f6e58451395e0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Process Capability Indices (PCIs) are not only a good communication tools between sales departments and customers but also convenient tools for internal engineers to evaluate and analyze process capabilities of products. Many statisticians and process engineers are dedicated to research on process capability indices, among which the Taguchi cost loss index can reflect both the process yield and process cost loss at the same time. Therefore, in this study the Taguchi cost loss index was used to propose a novel process quality evaluation model. After the process was stabilized, a process capability evaluation was carried out. This study used Boole’s inequality and DeMorgan’s theorem to derive the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mo>)</mo></mrow><mo>×</mo><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> confidence region of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mi>δ</mi><mo>,</mo><msup><mi>γ</mi><mn>2</mn></msup></mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula> based on control chart data. The study adopted the mathematical programming method to find the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mo>)</mo></mrow><mo>×</mo><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> confidence interval of the Taguchi cost loss index then employed a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow><mo>)</mo></mrow><mo>×</mo><mn>100</mn><mo>%</mo></mrow></semantics></math></inline-formula> confidence interval to perform statistical testing and to determine whether the process needed improvement.