Real-time, automatic, open-source sleep stage classification system using single EEG for mice
Abstract We developed a real-time sleep stage classification system with a convolutional neural network using only a one-channel electro-encephalogram source from mice and universally available features in any time-series data: raw signal, spectrum, and zeitgeber time. To accommodate historical info...
Guardado en:
Autores principales: | Taro Tezuka, Deependra Kumar, Sima Singh, Iyo Koyanagi, Toshie Naoi, Masanori Sakaguchi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32e217a2d3eb4aa5aa44105bcfdee058 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Sleep Stage Classification of Children with Sleep-Disordered Breathing Using the Modularized Network
por: Wang H, et al.
Publicado: (2021) -
Efficient embedded sleep wake classification for open-source actigraphy
por: Tommaso Banfi, et al.
Publicado: (2021) -
An open-source, high-performance tool for automated sleep staging
por: Raphael Vallat, et al.
Publicado: (2021) -
Classification of sleep apnea based on EEG sub-band signal characteristics
por: Xiaoyun Zhao, et al.
Publicado: (2021) -
Effects of Dinner Timing on Sleep Stage Distribution and EEG Power Spectrum in Healthy Volunteers
por: Duan D, et al.
Publicado: (2021)