Identification of pollen taxa by different microscopy techniques.
Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image an...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32ea9df901794e90aa3cd81072fac9e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:32ea9df901794e90aa3cd81072fac9e4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:32ea9df901794e90aa3cd81072fac9e42021-12-02T20:08:41ZIdentification of pollen taxa by different microscopy techniques.1932-620310.1371/journal.pone.0256808https://doaj.org/article/32ea9df901794e90aa3cd81072fac9e42021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0256808https://doaj.org/toc/1932-6203Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied.Matej PospiechZdeňka JavůrkováPavel HrabecPavel ŠtarhaSimona LjasovskáJosef BednářBohuslava TremlováPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 9, p e0256808 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Matej Pospiech Zdeňka Javůrková Pavel Hrabec Pavel Štarha Simona Ljasovská Josef Bednář Bohuslava Tremlová Identification of pollen taxa by different microscopy techniques. |
description |
Melissopalynology is an important analytical method to identify botanical origin of honey. Pollen grain recognition is commonly performed by visual inspection by a trained person. An alternative method for visual inspection is automated pollen analysis based on the image analysis technique. Image analysis transfers visual information to mathematical descriptions. In this work, the suitability of three microscopic techniques for automatic analysis of pollen grains was studied. 2D and 3D morphological characteristics, textural and colour features, and extended depth of focus characteristics were used for the pollen discrimination. In this study, 7 botanical taxa and a total of 2482 pollen grains were evaluated. The highest correct classification rate of 93.05% was achieved using the phase contrast microscopy, followed by the dark field microscopy reaching 91.02%, and finally by the light field microscopy reaching 88.88%. The most significant discriminant characteristics were morphological (2D and 3D) and colour characteristics. Our results confirm the potential of using automatic pollen analysis to discriminate pollen taxa in honey. This work provides the basis for further research where the taxa dataset will be increased, and new descriptors will be studied. |
format |
article |
author |
Matej Pospiech Zdeňka Javůrková Pavel Hrabec Pavel Štarha Simona Ljasovská Josef Bednář Bohuslava Tremlová |
author_facet |
Matej Pospiech Zdeňka Javůrková Pavel Hrabec Pavel Štarha Simona Ljasovská Josef Bednář Bohuslava Tremlová |
author_sort |
Matej Pospiech |
title |
Identification of pollen taxa by different microscopy techniques. |
title_short |
Identification of pollen taxa by different microscopy techniques. |
title_full |
Identification of pollen taxa by different microscopy techniques. |
title_fullStr |
Identification of pollen taxa by different microscopy techniques. |
title_full_unstemmed |
Identification of pollen taxa by different microscopy techniques. |
title_sort |
identification of pollen taxa by different microscopy techniques. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/32ea9df901794e90aa3cd81072fac9e4 |
work_keys_str_mv |
AT matejpospiech identificationofpollentaxabydifferentmicroscopytechniques AT zdenkajavurkova identificationofpollentaxabydifferentmicroscopytechniques AT pavelhrabec identificationofpollentaxabydifferentmicroscopytechniques AT pavelstarha identificationofpollentaxabydifferentmicroscopytechniques AT simonaljasovska identificationofpollentaxabydifferentmicroscopytechniques AT josefbednar identificationofpollentaxabydifferentmicroscopytechniques AT bohuslavatremlova identificationofpollentaxabydifferentmicroscopytechniques |
_version_ |
1718375172085383168 |