An interpretable framework for investigating the neighborhood effect in POI recommendation.
Geographical characteristics have been proven to be effective in improving the quality of point-of-interest (POI) recommendation. However, existing works on POI recommendation focus on cost (time or money) of travel for a user. An important geographical aspect that has not been studied adequately is...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/32ed5fa152ba4bb7b432a93174314ca5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:32ed5fa152ba4bb7b432a93174314ca5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:32ed5fa152ba4bb7b432a93174314ca52021-12-02T20:15:11ZAn interpretable framework for investigating the neighborhood effect in POI recommendation.1932-620310.1371/journal.pone.0255685https://doaj.org/article/32ed5fa152ba4bb7b432a93174314ca52021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0255685https://doaj.org/toc/1932-6203Geographical characteristics have been proven to be effective in improving the quality of point-of-interest (POI) recommendation. However, existing works on POI recommendation focus on cost (time or money) of travel for a user. An important geographical aspect that has not been studied adequately is the neighborhood effect, which captures a user's POI visiting behavior based on the user's preference not only to a POI, but also to the POI's neighborhood. To provide an interpretable framework to fully study the neighborhood effect, first, we develop different sets of insightful features, representing different aspects of neighborhood effect. We employ a Yelp data set to evaluate how different aspects of the neighborhood effect affect a user's POI visiting behavior. Second, we propose a deep learning-based recommendation framework that exploits the neighborhood effect. Experimental results show that our approach is more effective than two state-of-the-art matrix factorization-based POI recommendation techniques.Guangchao YuanMunindar P SinghPradeep K MurukannaiahPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 8, p e0255685 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Guangchao Yuan Munindar P Singh Pradeep K Murukannaiah An interpretable framework for investigating the neighborhood effect in POI recommendation. |
description |
Geographical characteristics have been proven to be effective in improving the quality of point-of-interest (POI) recommendation. However, existing works on POI recommendation focus on cost (time or money) of travel for a user. An important geographical aspect that has not been studied adequately is the neighborhood effect, which captures a user's POI visiting behavior based on the user's preference not only to a POI, but also to the POI's neighborhood. To provide an interpretable framework to fully study the neighborhood effect, first, we develop different sets of insightful features, representing different aspects of neighborhood effect. We employ a Yelp data set to evaluate how different aspects of the neighborhood effect affect a user's POI visiting behavior. Second, we propose a deep learning-based recommendation framework that exploits the neighborhood effect. Experimental results show that our approach is more effective than two state-of-the-art matrix factorization-based POI recommendation techniques. |
format |
article |
author |
Guangchao Yuan Munindar P Singh Pradeep K Murukannaiah |
author_facet |
Guangchao Yuan Munindar P Singh Pradeep K Murukannaiah |
author_sort |
Guangchao Yuan |
title |
An interpretable framework for investigating the neighborhood effect in POI recommendation. |
title_short |
An interpretable framework for investigating the neighborhood effect in POI recommendation. |
title_full |
An interpretable framework for investigating the neighborhood effect in POI recommendation. |
title_fullStr |
An interpretable framework for investigating the neighborhood effect in POI recommendation. |
title_full_unstemmed |
An interpretable framework for investigating the neighborhood effect in POI recommendation. |
title_sort |
interpretable framework for investigating the neighborhood effect in poi recommendation. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/32ed5fa152ba4bb7b432a93174314ca5 |
work_keys_str_mv |
AT guangchaoyuan aninterpretableframeworkforinvestigatingtheneighborhoodeffectinpoirecommendation AT munindarpsingh aninterpretableframeworkforinvestigatingtheneighborhoodeffectinpoirecommendation AT pradeepkmurukannaiah aninterpretableframeworkforinvestigatingtheneighborhoodeffectinpoirecommendation AT guangchaoyuan interpretableframeworkforinvestigatingtheneighborhoodeffectinpoirecommendation AT munindarpsingh interpretableframeworkforinvestigatingtheneighborhoodeffectinpoirecommendation AT pradeepkmurukannaiah interpretableframeworkforinvestigatingtheneighborhoodeffectinpoirecommendation |
_version_ |
1718374574520795136 |