Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production

Ana Carolina Martínez-Torres, Diana G Zarate-Triviño, Helen Yarimet Lorenzo-Anota, Andrea Ávila-Ávila, Carolina Rodríguez-Abrego, Cristina Rodríguez-Padilla Laboratory of Immunology and Virology, Faculty of Biological Sciences, Auton...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martínez-Torres AC, Zarate-Triviño DG, Lorenzo-Anota HY, Ávila-Ávila A, Rodríguez-Abrego C, Rodríguez-Padilla C
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
ROS
Acceso en línea:https://doaj.org/article/330270f1acf94994b1dc89e461334342
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:330270f1acf94994b1dc89e461334342
record_format dspace
spelling oai:doaj.org-article:330270f1acf94994b1dc89e4613343422021-12-02T07:10:11ZChitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production1178-2013https://doaj.org/article/330270f1acf94994b1dc89e4613343422018-05-01T00:00:00Zhttps://www.dovepress.com/chitosan-gold-nanoparticles-induce-cell-death-in-hela-and-mcf-7-cells--peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Ana Carolina Martínez-Torres, Diana G Zarate-Triviño, Helen Yarimet Lorenzo-Anota, Andrea Ávila-Ávila, Carolina Rodríguez-Abrego, Cristina Rodríguez-Padilla Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico Background: Nanotechnology has gained important interest, especially in the development of new therapies; the application of gold nanoparticles (AuNPs) in the treatment and detection of diseases is a growing trend in this field. As cancer represents a serious health problem around the world, AuNPs are studied as potential drugs or drug carriers for anticancer agents. Recent studies show that AuNPs stabilized with chitosan (CH) possess interesting biological activities, including potential antitumor effects that could be selective to cancer cells.Materials and methods: In this study, we synthesized sodium citrate-AuNPs and CH-capped AuNPs of 3–10 nm, and analyzed their cytotoxicity in cervical (HeLa) and breast (MCF-7) cancer cells, and in peripheral blood mononuclear cells (PBMCs). Then, we evaluated the clonogenic potential, cell cycle, nuclear alterations, caspase dependence, and reactive oxygen species (ROS) production in HeLa and MCF-7 cells after chitosan gold nanoparticles (CH-AuNPs) exposure.Results: Our data showed that CH-AuNPs are cytotoxic in a dose-dependent manner in the cancer cell lines tested, while they induce low cytotoxicity in PBMCs. Sodium citrate gold nanoparticles did not show cytotoxic effects. In both HeLa and MCF-7 cell lines, CH-AuNPs inhibit clonogenic potential without inducing cell cycle arrest or nuclear alterations. The cell death mechanism is specific for the type of cancer cell line tested, as it depends on caspase activation in HeLa cells, whereas it is caspase independent in MCF-7 cells. In all cases, ROS production is mandatory for cell death induction by CH-AuNPs, as ROS inhibition with N-acetyl cysteine inhibits cell death.Conclusion: Our results show that CH-AuNPs are selective for HeLa and MCF-7 cancer cells, rather than normal PBMCs, and that ROS production seems to be a conserved feature of the cell death mechanism induced by CH-AuNPs. These results improve the knowledge of CH-AuNPs and open the way to the design of new pharmacological strategies using these agents against cancer. Keywords: AuNPs, cancer, PBMC, nuclear alterations, cell cycle, ROS Martínez-Torres ACZarate-Triviño DGLorenzo-Anota HYÁvila-Ávila ARodríguez-Abrego CRodríguez-Padilla CDove Medical PressarticleAuNPscancerPBMCnuclear alterationscell cycleROSMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 3235-3250 (2018)
institution DOAJ
collection DOAJ
language EN
topic AuNPs
cancer
PBMC
nuclear alterations
cell cycle
ROS
Medicine (General)
R5-920
spellingShingle AuNPs
cancer
PBMC
nuclear alterations
cell cycle
ROS
Medicine (General)
R5-920
Martínez-Torres AC
Zarate-Triviño DG
Lorenzo-Anota HY
Ávila-Ávila A
Rodríguez-Abrego C
Rodríguez-Padilla C
Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production
description Ana Carolina Martínez-Torres, Diana G Zarate-Triviño, Helen Yarimet Lorenzo-Anota, Andrea Ávila-Ávila, Carolina Rodríguez-Abrego, Cristina Rodríguez-Padilla Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey, Mexico Background: Nanotechnology has gained important interest, especially in the development of new therapies; the application of gold nanoparticles (AuNPs) in the treatment and detection of diseases is a growing trend in this field. As cancer represents a serious health problem around the world, AuNPs are studied as potential drugs or drug carriers for anticancer agents. Recent studies show that AuNPs stabilized with chitosan (CH) possess interesting biological activities, including potential antitumor effects that could be selective to cancer cells.Materials and methods: In this study, we synthesized sodium citrate-AuNPs and CH-capped AuNPs of 3–10 nm, and analyzed their cytotoxicity in cervical (HeLa) and breast (MCF-7) cancer cells, and in peripheral blood mononuclear cells (PBMCs). Then, we evaluated the clonogenic potential, cell cycle, nuclear alterations, caspase dependence, and reactive oxygen species (ROS) production in HeLa and MCF-7 cells after chitosan gold nanoparticles (CH-AuNPs) exposure.Results: Our data showed that CH-AuNPs are cytotoxic in a dose-dependent manner in the cancer cell lines tested, while they induce low cytotoxicity in PBMCs. Sodium citrate gold nanoparticles did not show cytotoxic effects. In both HeLa and MCF-7 cell lines, CH-AuNPs inhibit clonogenic potential without inducing cell cycle arrest or nuclear alterations. The cell death mechanism is specific for the type of cancer cell line tested, as it depends on caspase activation in HeLa cells, whereas it is caspase independent in MCF-7 cells. In all cases, ROS production is mandatory for cell death induction by CH-AuNPs, as ROS inhibition with N-acetyl cysteine inhibits cell death.Conclusion: Our results show that CH-AuNPs are selective for HeLa and MCF-7 cancer cells, rather than normal PBMCs, and that ROS production seems to be a conserved feature of the cell death mechanism induced by CH-AuNPs. These results improve the knowledge of CH-AuNPs and open the way to the design of new pharmacological strategies using these agents against cancer. Keywords: AuNPs, cancer, PBMC, nuclear alterations, cell cycle, ROS 
format article
author Martínez-Torres AC
Zarate-Triviño DG
Lorenzo-Anota HY
Ávila-Ávila A
Rodríguez-Abrego C
Rodríguez-Padilla C
author_facet Martínez-Torres AC
Zarate-Triviño DG
Lorenzo-Anota HY
Ávila-Ávila A
Rodríguez-Abrego C
Rodríguez-Padilla C
author_sort Martínez-Torres AC
title Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production
title_short Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production
title_full Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production
title_fullStr Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production
title_full_unstemmed Chitosan gold nanoparticles induce cell death in HeLa and MCF-7 cells through reactive oxygen species production
title_sort chitosan gold nanoparticles induce cell death in hela and mcf-7 cells through reactive oxygen species production
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/330270f1acf94994b1dc89e461334342
work_keys_str_mv AT martineztorresac chitosangoldnanoparticlesinducecelldeathinhelaandmcf7cellsthroughreactiveoxygenspeciesproduction
AT zaratetrivinodg chitosangoldnanoparticlesinducecelldeathinhelaandmcf7cellsthroughreactiveoxygenspeciesproduction
AT lorenzoanotahy chitosangoldnanoparticlesinducecelldeathinhelaandmcf7cellsthroughreactiveoxygenspeciesproduction
AT avilaavilaa chitosangoldnanoparticlesinducecelldeathinhelaandmcf7cellsthroughreactiveoxygenspeciesproduction
AT rodriguezabregoc chitosangoldnanoparticlesinducecelldeathinhelaandmcf7cellsthroughreactiveoxygenspeciesproduction
AT rodriguezpadillac chitosangoldnanoparticlesinducecelldeathinhelaandmcf7cellsthroughreactiveoxygenspeciesproduction
_version_ 1718399563325243392