A Bayesian optimized framework for successful application of unscented Kalman filter in parameter identification of MDOF structures
The success of the unscented Kalman filter can be jeopardized if the required initial parameters are not identified carefully. These parameters include the initial guesses and the levels of uncertainty in the target parameters and the process and measurement noise parameters. While a set of appropri...
Guardado en:
Autores principales: | Mohamadreza Sheibani, Ge Ou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3303672e0083406dbfe4594f6f84bbca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Linear optimal design of a magnetic repulsion negative stiffness structure
por: Zhang Bao, et al.
Publicado: (2021) -
An improved analytical dynamic model for rotating blade crack: With application to crack detection indicator analysis
por: Laihao Yang, et al.
Publicado: (2021) -
Study on dynamic characteristics of leaf spring system in vibration screen
por: Jiacheng Zhou, et al.
Publicado: (2021) -
Development and verification of hydroelastic model experiment for the flow-induced vibration analysis of roller compacted concrete dam
por: Yijia Li, et al.
Publicado: (2021) -
Vibrational energy flow cancelling by loading a reverse excitation: Visualization and analysis
por: Yingqun Ma, et al.
Publicado: (2021)