A Bayesian optimized framework for successful application of unscented Kalman filter in parameter identification of MDOF structures

The success of the unscented Kalman filter can be jeopardized if the required initial parameters are not identified carefully. These parameters include the initial guesses and the levels of uncertainty in the target parameters and the process and measurement noise parameters. While a set of appropri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohamadreza Sheibani, Ge Ou
Formato: article
Lenguaje:EN
Publicado: SAGE Publishing 2021
Materias:
Acceso en línea:https://doaj.org/article/3303672e0083406dbfe4594f6f84bbca
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares