Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes

Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imag...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Habib Ganjgahi, Anderson M. Winkler, David C. Glahn, John Blangero, Brian Donohue, Peter Kochunov, Thomas E. Nichols
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS.