Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes

Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imag...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Habib Ganjgahi, Anderson M. Winkler, David C. Glahn, John Blangero, Brian Donohue, Peter Kochunov, Thomas E. Nichols
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3315ced0f5074d3a9344c50e4a584c44
record_format dspace
spelling oai:doaj.org-article:3315ced0f5074d3a9344c50e4a584c442021-12-02T15:33:56ZFast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes10.1038/s41467-018-05444-62041-1723https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c442018-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05444-6https://doaj.org/toc/2041-1723Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS.Habib GanjgahiAnderson M. WinklerDavid C. GlahnJohn BlangeroBrian DonohuePeter KochunovThomas E. NicholsNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Habib Ganjgahi
Anderson M. Winkler
David C. Glahn
John Blangero
Brian Donohue
Peter Kochunov
Thomas E. Nichols
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
description Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS.
format article
author Habib Ganjgahi
Anderson M. Winkler
David C. Glahn
John Blangero
Brian Donohue
Peter Kochunov
Thomas E. Nichols
author_facet Habib Ganjgahi
Anderson M. Winkler
David C. Glahn
John Blangero
Brian Donohue
Peter Kochunov
Thomas E. Nichols
author_sort Habib Ganjgahi
title Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
title_short Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
title_full Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
title_fullStr Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
title_full_unstemmed Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
title_sort fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c44
work_keys_str_mv AT habibganjgahi fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
AT andersonmwinkler fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
AT davidcglahn fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
AT johnblangero fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
AT briandonohue fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
AT peterkochunov fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
AT thomasenichols fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes
_version_ 1718386952846180352