Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imag...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3315ced0f5074d3a9344c50e4a584c44 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3315ced0f5074d3a9344c50e4a584c442021-12-02T15:33:56ZFast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes10.1038/s41467-018-05444-62041-1723https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c442018-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05444-6https://doaj.org/toc/2041-1723Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS.Habib GanjgahiAnderson M. WinklerDavid C. GlahnJohn BlangeroBrian DonohuePeter KochunovThomas E. NicholsNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-13 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Habib Ganjgahi Anderson M. Winkler David C. Glahn John Blangero Brian Donohue Peter Kochunov Thomas E. Nichols Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
description |
Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imaging GWAS. |
format |
article |
author |
Habib Ganjgahi Anderson M. Winkler David C. Glahn John Blangero Brian Donohue Peter Kochunov Thomas E. Nichols |
author_facet |
Habib Ganjgahi Anderson M. Winkler David C. Glahn John Blangero Brian Donohue Peter Kochunov Thomas E. Nichols |
author_sort |
Habib Ganjgahi |
title |
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
title_short |
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
title_full |
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
title_fullStr |
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
title_full_unstemmed |
Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
title_sort |
fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c44 |
work_keys_str_mv |
AT habibganjgahi fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes AT andersonmwinkler fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes AT davidcglahn fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes AT johnblangero fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes AT briandonohue fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes AT peterkochunov fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes AT thomasenichols fastandpowerfulgenomewideassociationofdensegeneticdatawithhighdimensionalimagingphenotypes |
_version_ |
1718386952846180352 |