Fast and powerful genome wide association of dense genetic data with high dimensional imaging phenotypes
Genome-wide association studies (GWAS) of neuroimaging data pose a significant computational burden because of the need to correct for multiple testing in both the genetic and the imaging data. Here, Ganjgahi et al. develop WLS-REML which significantly reduces computation running times in brain imag...
Guardado en:
| Autores principales: | , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2018
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/3315ced0f5074d3a9344c50e4a584c44 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|