Direct measurement of Coulomb-laser coupling
Abstract The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/331af8334d264590943eb164a821753a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity. |
---|