Surface-plasmon-coupled optical force sensors based on metal–insulator–metal metamaterials with movable air gap
Abstract We proposed surface-plasmon-coupled optical force sensors based on metal–insulator–metal (MIM) metamaterials with a movable air gap as an insulator layer. The MIM metamaterial was composed of an air gap sandwiched by a metal nanodot array and a metal diaphragm, the resonant wavelength of wh...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3320a45acd1f4a56818642cb12ccb540 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract We proposed surface-plasmon-coupled optical force sensors based on metal–insulator–metal (MIM) metamaterials with a movable air gap as an insulator layer. The MIM metamaterial was composed of an air gap sandwiched by a metal nanodot array and a metal diaphragm, the resonant wavelength of which was red-shifted when the air gap was narrowed by applying a normal force. We designed and fabricated a prototype of the proposed sensor and confirmed that the MIM metamaterial could be used as a force sensor with larger sensitivity than a force sensor based on Fabry-Pérot interferometer (FPI). |
---|