Quantitative analysis of dynamic association in live biological fluorescent samples.
Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also introduce shifting between the image channels, and traditional co...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3322ae2d4471497683d6a49a1555cf5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3322ae2d4471497683d6a49a1555cf5b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3322ae2d4471497683d6a49a1555cf5b2021-11-18T08:23:41ZQuantitative analysis of dynamic association in live biological fluorescent samples.1932-620310.1371/journal.pone.0094245https://doaj.org/article/3322ae2d4471497683d6a49a1555cf5b2014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24728133/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also introduce shifting between the image channels, and traditional colocalization methods cannot handle such situations. Our approach to quantifying the association between tagged proteins is to use an object-based method where the exact match of object locations is not assumed. Point-pattern matching provides a measure of correspondence between two point-sets under various changes between the sets. Thus, it can be used for robust quantitative analysis of vesicle association between image channels. Results for a large set of synthetic images shows that the novel association method based on point-pattern matching demonstrates robust capability to detect association of closely located vesicles in live cell-microscopy where traditional colocalization methods fail to produce results. In addition, the method outperforms compared Iterated Closest Points registration method. Results for fixed and live experimental data shows the association method to perform comparably to traditional methods in colocalization studies for fixed cells and to perform favorably in association studies for live cells.Pekka RuusuvuoriLassi PaavolainenKalle RutanenAnita MäkiHeikki HuttunenVarpu MarjomäkiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 4, p e94245 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Pekka Ruusuvuori Lassi Paavolainen Kalle Rutanen Anita Mäki Heikki Huttunen Varpu Marjomäki Quantitative analysis of dynamic association in live biological fluorescent samples. |
description |
Determining vesicle localization and association in live microscopy may be challenging due to non-simultaneous imaging of rapidly moving objects with two excitation channels. Besides errors due to movement of objects, imaging may also introduce shifting between the image channels, and traditional colocalization methods cannot handle such situations. Our approach to quantifying the association between tagged proteins is to use an object-based method where the exact match of object locations is not assumed. Point-pattern matching provides a measure of correspondence between two point-sets under various changes between the sets. Thus, it can be used for robust quantitative analysis of vesicle association between image channels. Results for a large set of synthetic images shows that the novel association method based on point-pattern matching demonstrates robust capability to detect association of closely located vesicles in live cell-microscopy where traditional colocalization methods fail to produce results. In addition, the method outperforms compared Iterated Closest Points registration method. Results for fixed and live experimental data shows the association method to perform comparably to traditional methods in colocalization studies for fixed cells and to perform favorably in association studies for live cells. |
format |
article |
author |
Pekka Ruusuvuori Lassi Paavolainen Kalle Rutanen Anita Mäki Heikki Huttunen Varpu Marjomäki |
author_facet |
Pekka Ruusuvuori Lassi Paavolainen Kalle Rutanen Anita Mäki Heikki Huttunen Varpu Marjomäki |
author_sort |
Pekka Ruusuvuori |
title |
Quantitative analysis of dynamic association in live biological fluorescent samples. |
title_short |
Quantitative analysis of dynamic association in live biological fluorescent samples. |
title_full |
Quantitative analysis of dynamic association in live biological fluorescent samples. |
title_fullStr |
Quantitative analysis of dynamic association in live biological fluorescent samples. |
title_full_unstemmed |
Quantitative analysis of dynamic association in live biological fluorescent samples. |
title_sort |
quantitative analysis of dynamic association in live biological fluorescent samples. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/3322ae2d4471497683d6a49a1555cf5b |
work_keys_str_mv |
AT pekkaruusuvuori quantitativeanalysisofdynamicassociationinlivebiologicalfluorescentsamples AT lassipaavolainen quantitativeanalysisofdynamicassociationinlivebiologicalfluorescentsamples AT kallerutanen quantitativeanalysisofdynamicassociationinlivebiologicalfluorescentsamples AT anitamaki quantitativeanalysisofdynamicassociationinlivebiologicalfluorescentsamples AT heikkihuttunen quantitativeanalysisofdynamicassociationinlivebiologicalfluorescentsamples AT varpumarjomaki quantitativeanalysisofdynamicassociationinlivebiologicalfluorescentsamples |
_version_ |
1718421852156592128 |