Spiking Neural Network Discovers Energy-Efficient Hexapod Motion in Deep Reinforcement Learning
In Deep Reinforcement Learning (DRL) for robotics application, it is important to find energy-efficient motions. For this purpose, a standard method is to set an action penalty in the reward to find the optimal motion considering the energy expenditure. This method is widely used for the simplicity...
Guardado en:
Autores principales: | Katsumi Naya, Kyo Kutsuzawa, Dai Owaki, Mitsuhiro Hayashibe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/335681a7613746e5a4b027d670d343bf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
MOTION LEARNING USING SPATIO-TEMPORAL NEURAL NETWORK
por: Nooraini Yusoff, et al.
Publicado: (2020) -
Hexapod Robot Static Stability Enhancement using Genetic Algorithm
por: Firas A. Raheem, et al.
Publicado: (2015) -
Hexapod Robot Static Stability Enhancement using Genetic Algorithm
por: Firas A. Raheem, et al.
Publicado: (2015) -
Clinical use of Ortho-SUV transosseous hexapod in treatment of lower limb false joints
por: N. V. Tishkov, et al.
Publicado: (2016) -
SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training
por: Fangxin Liu, et al.
Publicado: (2021)