Matrix degradability controls multicellularity of 3D cell migration

The fabrication of vascularized 3D tissues requires an understanding of how material properties govern endothelial cell invasion into the surrounding matrix. Here the authors integrate a non-swelling synthetic hydrogel with a microfluidic device to study chemokine gradient-driven angiogenic sproutin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Britta Trappmann, Brendon M. Baker, William J. Polacheck, Colin K. Choi, Jason A. Burdick, Christopher S. Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/335d95b70c154450b481fc790c3be92a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:335d95b70c154450b481fc790c3be92a
record_format dspace
spelling oai:doaj.org-article:335d95b70c154450b481fc790c3be92a2021-12-02T14:40:33ZMatrix degradability controls multicellularity of 3D cell migration10.1038/s41467-017-00418-62041-1723https://doaj.org/article/335d95b70c154450b481fc790c3be92a2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-00418-6https://doaj.org/toc/2041-1723The fabrication of vascularized 3D tissues requires an understanding of how material properties govern endothelial cell invasion into the surrounding matrix. Here the authors integrate a non-swelling synthetic hydrogel with a microfluidic device to study chemokine gradient-driven angiogenic sprouting and find that matrix degradability modulates the collectivity of cell migration.Britta TrappmannBrendon M. BakerWilliam J. PolacheckColin K. ChoiJason A. BurdickChristopher S. ChenNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-8 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Britta Trappmann
Brendon M. Baker
William J. Polacheck
Colin K. Choi
Jason A. Burdick
Christopher S. Chen
Matrix degradability controls multicellularity of 3D cell migration
description The fabrication of vascularized 3D tissues requires an understanding of how material properties govern endothelial cell invasion into the surrounding matrix. Here the authors integrate a non-swelling synthetic hydrogel with a microfluidic device to study chemokine gradient-driven angiogenic sprouting and find that matrix degradability modulates the collectivity of cell migration.
format article
author Britta Trappmann
Brendon M. Baker
William J. Polacheck
Colin K. Choi
Jason A. Burdick
Christopher S. Chen
author_facet Britta Trappmann
Brendon M. Baker
William J. Polacheck
Colin K. Choi
Jason A. Burdick
Christopher S. Chen
author_sort Britta Trappmann
title Matrix degradability controls multicellularity of 3D cell migration
title_short Matrix degradability controls multicellularity of 3D cell migration
title_full Matrix degradability controls multicellularity of 3D cell migration
title_fullStr Matrix degradability controls multicellularity of 3D cell migration
title_full_unstemmed Matrix degradability controls multicellularity of 3D cell migration
title_sort matrix degradability controls multicellularity of 3d cell migration
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/335d95b70c154450b481fc790c3be92a
work_keys_str_mv AT brittatrappmann matrixdegradabilitycontrolsmulticellularityof3dcellmigration
AT brendonmbaker matrixdegradabilitycontrolsmulticellularityof3dcellmigration
AT williamjpolacheck matrixdegradabilitycontrolsmulticellularityof3dcellmigration
AT colinkchoi matrixdegradabilitycontrolsmulticellularityof3dcellmigration
AT jasonaburdick matrixdegradabilitycontrolsmulticellularityof3dcellmigration
AT christopherschen matrixdegradabilitycontrolsmulticellularityof3dcellmigration
_version_ 1718390228343848960