Measuring High-Order Interactions in Rhythmic Processes Through Multivariate Spectral Information Decomposition
Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes...
Enregistré dans:
Auteurs principaux: | Yuri Antonacci, Ludovico Minati, Davide Nuzzi, Gorana Mijatovic, Riccardo Pernice, Daniele Marinazzo, Sebastiano Stramaglia, Luca Faes |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3374702d52b8411b8d77058b03158e18 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record
par: Katarzyna Ewa Lewińska, et autres
Publié: (2021) -
Computational Filters for Dental and Oral Lesion Visualization in Spectral Images
par: Joni Hyttinen, et autres
Publié: (2021) -
Spectral Clustering Effect in Software Development Effort Estimation
par: Petr Silhavy, et autres
Publié: (2021) -
Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series
par: Celec,Peter
Publié: (2004) -
Uniform Spectral Estimates for Families of Schrödinger Operators with Magnetic Field of Constant Intensity and Applications
par: Raymond,Nicolas
Publié: (2010)