Measuring High-Order Interactions in Rhythmic Processes Through Multivariate Spectral Information Decomposition
Many complex systems in physics, biology and engineering are modeled as dynamical networks and described using multivariate time series analysis. Recent developments have shown that the emergent dynamics of a network system are significantly affected by interactions involving multiple network nodes...
Guardado en:
Autores principales: | Yuri Antonacci, Ludovico Minati, Davide Nuzzi, Gorana Mijatovic, Riccardo Pernice, Daniele Marinazzo, Sebastiano Stramaglia, Luca Faes |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3374702d52b8411b8d77058b03158e18 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record
por: Katarzyna Ewa Lewińska, et al.
Publicado: (2021) -
Computational Filters for Dental and Oral Lesion Visualization in Spectral Images
por: Joni Hyttinen, et al.
Publicado: (2021) -
Spectral Clustering Effect in Software Development Effort Estimation
por: Petr Silhavy, et al.
Publicado: (2021) -
Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series
por: Celec,Peter
Publicado: (2004) -
Uniform Spectral Estimates for Families of Schrödinger Operators with Magnetic Field of Constant Intensity and Applications
por: Raymond,Nicolas
Publicado: (2010)