Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study
Abstract Background Segmentation of important structures in temporal bone CT is the basis of image-guided otologic surgery. Manual segmentation of temporal bone CT is time- consuming and laborious. We assessed the feasibility and generalization ability of a proposed deep learning model for automated...
Guardado en:
Autores principales: | Jiang Wang, Yi Lv, Junchen Wang, Furong Ma, Yali Du, Xin Fan, Menglin Wang, Jia Ke |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3376463b8a5c4b5baf3685e472ba548e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
por: Xiang Liu, et al.
Publicado: (2021) -
A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets
por: Baochun He, et al.
Publicado: (2021) -
A NIM PET/CT phantom for evaluating the PET image quality of micro-lesions and the performance parameters of CT
por: Shujie Lu, et al.
Publicado: (2021) -
Deep Learning-Augmented Head and Neck Organs at Risk Segmentation From CT Volumes
por: Wei Wang, et al.
Publicado: (2021) -
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study
por: Pei Yang, et al.
Publicado: (2021)