Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.

The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juan Diego Gaitán-Espitia, María Belén Arias, Marco A Lardies, Roberto F Nespolo
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3394710d6a054e70b8278bdbd6fba50e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3394710d6a054e70b8278bdbd6fba50e
record_format dspace
spelling oai:doaj.org-article:3394710d6a054e70b8278bdbd6fba50e2021-11-18T09:01:18ZVariation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.1932-620310.1371/journal.pone.0070662https://doaj.org/article/3394710d6a054e70b8278bdbd6fba50e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23940617/?tool=EBIhttps://doaj.org/toc/1932-6203The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better") and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.Juan Diego Gaitán-EspitiaMaría Belén AriasMarco A LardiesRoberto F NespoloPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 8, p e70662 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Juan Diego Gaitán-Espitia
María Belén Arias
Marco A Lardies
Roberto F Nespolo
Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
description The ability of organisms to perform at different temperatures could be described by a continuous nonlinear reaction norm (i.e., thermal performance curve, TPC), in which the phenotypic trait value varies as a function of temperature. Almost any shift in the parameters of this performance curve could highlight the direct effect of temperature on organism fitness, providing a powerful framework for testing thermal adaptation hypotheses. Inter-and intraspecific differences in this performance curve are also reflected in thermal tolerances limits (e.g., critical and lethal limits), influencing the biogeographic patterns of species' distribution. Within this context, here we investigated the intraspecific variation in thermal sensitivities and thermal tolerances in three populations of the invasive snail Cornu aspersum across a geographical gradient, characterized by different climatic conditions. Thus, we examined population differentiation in the TPCs, thermal-coma recovery times, expression of heat-shock proteins and standard metabolic rate (i.e., energetic costs of physiological differentiation). We tested two competing hypotheses regarding thermal adaptation (the "hotter is better" and the generalist-specialist trade-offs). Our results show that the differences in thermal sensitivity among populations of C. aspersum follow a latitudinal pattern, which is likely the result of a combination of thermodynamic constraints ("hotter is better") and thermal adaptations to their local environments (generalist-specialist trade-offs). This finding is also consistent with some thermal tolerance indices such as the Heat-Shock Protein Response and the recovery time from chill-coma. However, mixed responses in the evaluated traits suggest that thermal adaptation in this species is not complete, as we were not able to detect any differences in neither energetic costs of physiological differentiation among populations, nor in the heat-coma recovery.
format article
author Juan Diego Gaitán-Espitia
María Belén Arias
Marco A Lardies
Roberto F Nespolo
author_facet Juan Diego Gaitán-Espitia
María Belén Arias
Marco A Lardies
Roberto F Nespolo
author_sort Juan Diego Gaitán-Espitia
title Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
title_short Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
title_full Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
title_fullStr Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
title_full_unstemmed Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum.
title_sort variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail cornu aspersum.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/3394710d6a054e70b8278bdbd6fba50e
work_keys_str_mv AT juandiegogaitanespitia variationinthermalsensitivityandthermaltolerancesinaninvasivespeciesacrossaclimaticgradientlessonsfromthelandsnailcornuaspersum
AT mariabelenarias variationinthermalsensitivityandthermaltolerancesinaninvasivespeciesacrossaclimaticgradientlessonsfromthelandsnailcornuaspersum
AT marcoalardies variationinthermalsensitivityandthermaltolerancesinaninvasivespeciesacrossaclimaticgradientlessonsfromthelandsnailcornuaspersum
AT robertofnespolo variationinthermalsensitivityandthermaltolerancesinaninvasivespeciesacrossaclimaticgradientlessonsfromthelandsnailcornuaspersum
_version_ 1718421014519480320