Comparative evaluation of mechanical and physical properties of a new bulk-fill alkasite with conventional restorative materials
Purpose: The physical and mechanical performance of a newly commercialized dental restorative material (alkasite) was compared with glass ionomer cement (GIC) and nano-hybrid composite. Methodology: Human extracted premolars were used to investigate the shear bond strength. Restorative materials wer...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/339584e172044e568bac7d2e47902d1c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Purpose: The physical and mechanical performance of a newly commercialized dental restorative material (alkasite) was compared with glass ionomer cement (GIC) and nano-hybrid composite. Methodology: Human extracted premolars were used to investigate the shear bond strength. Restorative materials were placed on the dentine surface and were aged in deionized water for 14 days. The 3-D surface roughness was evaluated before and after chewing simulation cycles (50,000). The samples were fatigued mechanically using a chewing simulator and investigated with a scanning electron microscope (SEM). Results: For shear bond strength, alkasite showed significantly high values than GIC, whereas non-significant difference was observed between alkasite and nano-hybrid composite. After the chewing simulation (50,000 cycles), non-significant difference was found between GIC and nano-hybrid composite, where surface roughness values were highest for GIC and lowest for alkasite. Conclusion: The newly developed restorative material (alkasite) has shown better results than existing restorative materials. |
---|