Automation of diffusion database development in multicomponent alloys from large number of experimental composition profiles
Abstract Nowadays, the urgency for the high-quality interdiffusion coefficients and atomic mobilities with quantified uncertainties in multicomponent/multi-principal element alloys, which are indispensable for comprehensive understanding of the diffusion-controlled processes during their preparation...
Guardado en:
Autores principales: | Jing Zhong, Li Chen, Lijun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/339b9f813184422d8704b8ea08ec4a21 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bayesian optimization with adaptive surrogate models for automated experimental design
por: Bowen Lei, et al.
Publicado: (2021) -
Machine-learned interatomic potentials for alloys and alloy phase diagrams
por: Conrad W. Rosenbrock, et al.
Publicado: (2021) -
Automated calculation and convergence of defect transport tensors
por: Thomas D. Swinburne, et al.
Publicado: (2020) -
Automated stopping criterion for spectral measurements with active learning
por: Tetsuro Ueno, et al.
Publicado: (2021) -
Visualizing temperature-dependent phase stability in high entropy alloys
por: Daniel Evans, et al.
Publicado: (2021)