Deep neural networks for genomic prediction do not estimate marker effects
Abstract Genomic prediction is a promising technology for advancing both plant and animal breeding, with many different prediction models evaluated in the literature. It has been suggested that the ability of powerful nonlinear models, such as deep neural networks, to capture complex epistatic effec...
Guardado en:
Autores principales: | Jordan Ubbens, Isobel Parkin, Christina Eynck, Ian Stavness, Andrew G. Sharpe |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33a2fce533d7499b90a08552cbaacd06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of a Poisson deep neural network model for the prediction of count data in genome‐based prediction
por: Osval A. Montesinos‐Lopez, et al.
Publicado: (2021) -
Deep‐learning power and perspectives for genomic selection
por: Osval Antonio Montesinos‐López, et al.
Publicado: (2021) -
Multitrait machine‐ and deep‐learning models for genomic selection using spectral information in a wheat breeding program
por: Karansher Sandhu, et al.
Publicado: (2021) -
The Plant Genome special issue: Advances in genomic selection and application of machine learning in genomic prediction for crop improvement
por: Rajeev K. Varshney
Publicado: (2021) -
A genome sequence resource for the genus Passiflora, the genome of the wild diploid species Passiflora organensis
por: Zirlane Portugal Costa, et al.
Publicado: (2021)