Deep neural networks for genomic prediction do not estimate marker effects
Abstract Genomic prediction is a promising technology for advancing both plant and animal breeding, with many different prediction models evaluated in the literature. It has been suggested that the ability of powerful nonlinear models, such as deep neural networks, to capture complex epistatic effec...
Enregistré dans:
Auteurs principaux: | Jordan Ubbens, Isobel Parkin, Christina Eynck, Ian Stavness, Andrew G. Sharpe |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Wiley
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/33a2fce533d7499b90a08552cbaacd06 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Application of a Poisson deep neural network model for the prediction of count data in genome‐based prediction
par: Osval A. Montesinos‐Lopez, et autres
Publié: (2021) -
Deep‐learning power and perspectives for genomic selection
par: Osval Antonio Montesinos‐López, et autres
Publié: (2021) -
Multitrait machine‐ and deep‐learning models for genomic selection using spectral information in a wheat breeding program
par: Karansher Sandhu, et autres
Publié: (2021) -
The Plant Genome special issue: Advances in genomic selection and application of machine learning in genomic prediction for crop improvement
par: Rajeev K. Varshney
Publié: (2021) -
A genome sequence resource for the genus Passiflora, the genome of the wild diploid species Passiflora organensis
par: Zirlane Portugal Costa, et autres
Publié: (2021)