Prediction of Acquired Antimicrobial Resistance for Multiple Bacterial Species Using Neural Networks
ABSTRACT Machine learning has proven to be a powerful method to predict antimicrobial resistance (AMR) without using prior knowledge for selected bacterial species-antimicrobial combinations. To date, only species-specific machine learning models have been developed, and to the best of our knowledge...
Enregistré dans:
Auteurs principaux: | D. Aytan-Aktug, P. T. L. C. Clausen, V. Bortolaia, F. M. Aarestrup, O. Lund |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Society for Microbiology
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/33bc4ac6ab3a4460b35230d1ea2847e2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Identification of Primary Antimicrobial Resistance Drivers in Agricultural Nontyphoidal <named-content content-type="genus-species">Salmonella enterica</named-content> Serovars by Using Machine Learning
par: Finlay Maguire, et autres
Publié: (2019) -
Detecting genes associated with antimicrobial resistance and pathogen virulence in three New Zealand rivers
par: Meredith Davis, et autres
Publié: (2021) -
Outcomes and Future Prospect of Japan’s National Action Plan on Antimicrobial Resistance (2016–2020)
par: Yoshiaki Gu, et autres
Publié: (2021) -
Systematic Evaluation of Whole-Genome Sequencing Based Prediction of Antimicrobial Resistance in Campylobacter jejuni and C. coli
par: Lisa M. Hodges, et autres
Publié: (2021) -
Tackling Antimicrobial Resistance in the Shadow of COVID-19
par: Ami Patel
Publié: (2021)