Fermionic neural-network states for ab-initio electronic structure

Despite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kenny Choo, Antonio Mezzacapo, Giuseppe Carleo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/33bdf8234a854173ac0adada5147c2a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:33bdf8234a854173ac0adada5147c2a5
record_format dspace
spelling oai:doaj.org-article:33bdf8234a854173ac0adada5147c2a52021-12-02T16:50:21ZFermionic neural-network states for ab-initio electronic structure10.1038/s41467-020-15724-92041-1723https://doaj.org/article/33bdf8234a854173ac0adada5147c2a52020-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15724-9https://doaj.org/toc/2041-1723Despite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accuracy.Kenny ChooAntonio MezzacapoGiuseppe CarleoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-7 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Kenny Choo
Antonio Mezzacapo
Giuseppe Carleo
Fermionic neural-network states for ab-initio electronic structure
description Despite the importance of neural-network quantum states, representing fermionic matter is yet to be fully achieved. Here the authors map fermionic degrees of freedom to spin ones and use neural-networks to perform electronic structure calculations on model diatomic molecules to achieve chemical accuracy.
format article
author Kenny Choo
Antonio Mezzacapo
Giuseppe Carleo
author_facet Kenny Choo
Antonio Mezzacapo
Giuseppe Carleo
author_sort Kenny Choo
title Fermionic neural-network states for ab-initio electronic structure
title_short Fermionic neural-network states for ab-initio electronic structure
title_full Fermionic neural-network states for ab-initio electronic structure
title_fullStr Fermionic neural-network states for ab-initio electronic structure
title_full_unstemmed Fermionic neural-network states for ab-initio electronic structure
title_sort fermionic neural-network states for ab-initio electronic structure
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/33bdf8234a854173ac0adada5147c2a5
work_keys_str_mv AT kennychoo fermionicneuralnetworkstatesforabinitioelectronicstructure
AT antoniomezzacapo fermionicneuralnetworkstatesforabinitioelectronicstructure
AT giuseppecarleo fermionicneuralnetworkstatesforabinitioelectronicstructure
_version_ 1718383029314912256