Feature-based learning improves adaptability without compromising precision
Learning about a rewarded outcome is complicated by the fact that a choice often incorporates multiple features with differing association with the reward. Here the authors demonstrate that feature-based learning is an efficient and adaptive strategy in dynamically changing environments.
Guardado en:
Autores principales: | Shiva Farashahi, Katherine Rowe, Zohra Aslami, Daeyeol Lee, Alireza Soltani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33bf02120d2042a4b592e8332463de53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Neural substrates of cognitive biases during probabilistic inference
por: Alireza Soltani, et al.
Publicado: (2016) -
Livestock integration into soybean systems improves long-term system stability and profits without compromising crop yields
por: Pedro Arthur de Albuquerque Nunes, et al.
Publicado: (2021) -
A high-precision feature extraction network of fatigue speech from air traffic controller radiotelephony based on improved deep learning
por: Zhiyuan Shen, et al.
Publicado: (2021) -
Medial Inguino-Femoral Lymphadenectomy for Vulvar Cancer: An Approach to Decrease Lymphedema without Compromising Survival
por: Neville F. Hacker, et al.
Publicado: (2021) -
Fine adaptive precision grip control without maximum pinch strength changes after upper limb neurodynamic mobilization
por: Frédéric Dierick, et al.
Publicado: (2021)