CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction

Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.

Guardado en:
Detalles Bibliográficos
Autores principales: Fusong Ju, Jianwei Zhu, Bin Shao, Lupeng Kong, Tie-Yan Liu, Wei-Mou Zheng, Dongbo Bu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/33cc2239e1a44129b8b0dddfeb060858
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:33cc2239e1a44129b8b0dddfeb060858
record_format dspace
spelling oai:doaj.org-article:33cc2239e1a44129b8b0dddfeb0608582021-12-02T16:49:12ZCopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction10.1038/s41467-021-22869-82041-1723https://doaj.org/article/33cc2239e1a44129b8b0dddfeb0608582021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22869-8https://doaj.org/toc/2041-1723Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.Fusong JuJianwei ZhuBin ShaoLupeng KongTie-Yan LiuWei-Mou ZhengDongbo BuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Fusong Ju
Jianwei Zhu
Bin Shao
Lupeng Kong
Tie-Yan Liu
Wei-Mou Zheng
Dongbo Bu
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
description Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.
format article
author Fusong Ju
Jianwei Zhu
Bin Shao
Lupeng Kong
Tie-Yan Liu
Wei-Mou Zheng
Dongbo Bu
author_facet Fusong Ju
Jianwei Zhu
Bin Shao
Lupeng Kong
Tie-Yan Liu
Wei-Mou Zheng
Dongbo Bu
author_sort Fusong Ju
title CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
title_short CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
title_full CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
title_fullStr CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
title_full_unstemmed CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
title_sort copulanet: learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/33cc2239e1a44129b8b0dddfeb060858
work_keys_str_mv AT fusongju copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
AT jianweizhu copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
AT binshao copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
AT lupengkong copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
AT tieyanliu copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
AT weimouzheng copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
AT dongbobu copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction
_version_ 1718383388270788608