CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33cc2239e1a44129b8b0dddfeb060858 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:33cc2239e1a44129b8b0dddfeb060858 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:33cc2239e1a44129b8b0dddfeb0608582021-12-02T16:49:12ZCopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction10.1038/s41467-021-22869-82041-1723https://doaj.org/article/33cc2239e1a44129b8b0dddfeb0608582021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22869-8https://doaj.org/toc/2041-1723Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.Fusong JuJianwei ZhuBin ShaoLupeng KongTie-Yan LiuWei-Mou ZhengDongbo BuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Fusong Ju Jianwei Zhu Bin Shao Lupeng Kong Tie-Yan Liu Wei-Mou Zheng Dongbo Bu CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
description |
Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency. |
format |
article |
author |
Fusong Ju Jianwei Zhu Bin Shao Lupeng Kong Tie-Yan Liu Wei-Mou Zheng Dongbo Bu |
author_facet |
Fusong Ju Jianwei Zhu Bin Shao Lupeng Kong Tie-Yan Liu Wei-Mou Zheng Dongbo Bu |
author_sort |
Fusong Ju |
title |
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
title_short |
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
title_full |
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
title_fullStr |
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
title_full_unstemmed |
CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
title_sort |
copulanet: learning residue co-evolution directly from multiple sequence alignment for protein structure prediction |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/33cc2239e1a44129b8b0dddfeb060858 |
work_keys_str_mv |
AT fusongju copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction AT jianweizhu copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction AT binshao copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction AT lupengkong copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction AT tieyanliu copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction AT weimouzheng copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction AT dongbobu copulanetlearningresiduecoevolutiondirectlyfrommultiplesequencealignmentforproteinstructureprediction |
_version_ |
1718383388270788608 |