CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction
Protein structure prediction is a challenge. A new deep learning framework, CopulaNet, is a major step forward toward end-to-end prediction of inter-residue distances and protein tertiary structures with improved accuracy and efficiency.
Guardado en:
Autores principales: | Fusong Ju, Jianwei Zhu, Bin Shao, Lupeng Kong, Tie-Yan Liu, Wei-Mou Zheng, Dongbo Bu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33cc2239e1a44129b8b0dddfeb060858 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Disentangling direct from indirect co-evolution of residues in protein alignments.
por: Lukas Burger, et al.
Publicado: (2010) -
Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction
por: Aashish Jain, et al.
Publicado: (2021) -
Alignment of liquid crystals by polymers with residual amounts of solvents
por: Alexander M. Parshin, et al.
Publicado: (2017) -
On copulas of self-similar Ito processes
por: Jaworski Piotr, et al.
Publicado: (2021) -
New results on perturbation-based copulas
por: Saminger-Platz Susanne, et al.
Publicado: (2021)