Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion
Abstract During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33cf66306ece48aca7f00e9e91e306ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:33cf66306ece48aca7f00e9e91e306ab |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:33cf66306ece48aca7f00e9e91e306ab2021-12-02T11:52:20ZFreestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion10.1038/s41598-017-09841-72045-2322https://doaj.org/article/33cf66306ece48aca7f00e9e91e306ab2017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-09841-7https://doaj.org/toc/2045-2322Abstract During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO2.Nabin AryalArnab HalderMinwei ZhangPatrick R. WhelanPier-Luc TremblayQijin ChiTian ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-8 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Nabin Aryal Arnab Halder Minwei Zhang Patrick R. Whelan Pier-Luc Tremblay Qijin Chi Tian Zhang Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion |
description |
Abstract During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper as novel cathode material to enhance electron transfer between the cathode and microbe, which in turn facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension. The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO paper cathodes and 83.8 ± 4.2% with carbon paper cathodes, respectively. Furthermore, more intensive cell attachment was observed on RGO paper electrodes than on carbon paper electrodes with confocal laser scanning microscopy and scanning electron microscopy. These results highlight the potential of RGO paper as a promising cathode for MES from CO2. |
format |
article |
author |
Nabin Aryal Arnab Halder Minwei Zhang Patrick R. Whelan Pier-Luc Tremblay Qijin Chi Tian Zhang |
author_facet |
Nabin Aryal Arnab Halder Minwei Zhang Patrick R. Whelan Pier-Luc Tremblay Qijin Chi Tian Zhang |
author_sort |
Nabin Aryal |
title |
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion |
title_short |
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion |
title_full |
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion |
title_fullStr |
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion |
title_full_unstemmed |
Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion |
title_sort |
freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient co2 conversion |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/33cf66306ece48aca7f00e9e91e306ab |
work_keys_str_mv |
AT nabinaryal freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion AT arnabhalder freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion AT minweizhang freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion AT patrickrwhelan freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion AT pierluctremblay freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion AT qijinchi freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion AT tianzhang freestandingandflexiblegraphenepapersasbioelectrochemicalcathodeforselectiveandefficientco2conversion |
_version_ |
1718395095607148544 |