Rapid and flexible segmentation of electron microscopy data using few-shot machine learning

Abstract Automatic segmentation of key microstructural features in atomic-scale electron microscope images is critical to improved understanding of structure–property relationships in many important materials and chemical systems. However, the present paradigm involves time-intensive manual analysis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sarah Akers, Elizabeth Kautz, Andrea Trevino-Gavito, Matthew Olszta, Bethany E. Matthews, Le Wang, Yingge Du, Steven R. Spurgeon
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/33d1bedf318a45748896921c9d1f1190
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!