Mechanical stability of talin rod controls cell migration and substrate sensing

Abstract Cells adhere to the surrounding tissue and probe its mechanical properties by forming cell-matrix adhesions. Talin is a critical adhesion protein and participates in the transmission of mechanical signals between extracellular matrix and cell cytoskeleton. Force induced unfolding of talin r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rolle Rahikainen, Magdaléna von Essen, Markus Schaefer, Lei Qi, Latifeh Azizi, Conor Kelly, Teemu O. Ihalainen, Bernhard Wehrle-Haller, Martin Bastmeyer, Cai Huang, Vesa P. Hytönen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/33e0adba084842f4828dc8e78f0a5053
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:33e0adba084842f4828dc8e78f0a5053
record_format dspace
spelling oai:doaj.org-article:33e0adba084842f4828dc8e78f0a50532021-12-02T12:30:54ZMechanical stability of talin rod controls cell migration and substrate sensing10.1038/s41598-017-03335-22045-2322https://doaj.org/article/33e0adba084842f4828dc8e78f0a50532017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-03335-2https://doaj.org/toc/2045-2322Abstract Cells adhere to the surrounding tissue and probe its mechanical properties by forming cell-matrix adhesions. Talin is a critical adhesion protein and participates in the transmission of mechanical signals between extracellular matrix and cell cytoskeleton. Force induced unfolding of talin rod subdomains has been proposed to act as a cellular mechanosensor, but so far evidence linking their mechanical stability and cellular response has been lacking. Here, by utilizing computationally designed mutations, we demonstrate that stepwise destabilization of the talin rod R3 subdomain decreases cellular traction force generation, which affects talin and vinculin dynamics in cell-matrix adhesions and results in the formation of talin-rich but unstable adhesions. We observed a connection between talin stability and the rate of cell migration and also found that talin destabilization affects the usage of different integrin subtypes and sensing of extracellular matrix proteins. Experiments with truncated forms of talin confirm the mechanosensory role of the talin R3 subdomain and exclude the possibility that the observed effects are caused by the release of talin head-rod autoinhibition. In conclusion, this study provides evidence into how the controlled talin rod domain unfolding acts as a key regulator of adhesion structure and function and consequently controls central cellular processes such as cell migration and substrate sensing.Rolle RahikainenMagdaléna von EssenMarkus SchaeferLei QiLatifeh AziziConor KellyTeemu O. IhalainenBernhard Wehrle-HallerMartin BastmeyerCai HuangVesa P. HytönenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rolle Rahikainen
Magdaléna von Essen
Markus Schaefer
Lei Qi
Latifeh Azizi
Conor Kelly
Teemu O. Ihalainen
Bernhard Wehrle-Haller
Martin Bastmeyer
Cai Huang
Vesa P. Hytönen
Mechanical stability of talin rod controls cell migration and substrate sensing
description Abstract Cells adhere to the surrounding tissue and probe its mechanical properties by forming cell-matrix adhesions. Talin is a critical adhesion protein and participates in the transmission of mechanical signals between extracellular matrix and cell cytoskeleton. Force induced unfolding of talin rod subdomains has been proposed to act as a cellular mechanosensor, but so far evidence linking their mechanical stability and cellular response has been lacking. Here, by utilizing computationally designed mutations, we demonstrate that stepwise destabilization of the talin rod R3 subdomain decreases cellular traction force generation, which affects talin and vinculin dynamics in cell-matrix adhesions and results in the formation of talin-rich but unstable adhesions. We observed a connection between talin stability and the rate of cell migration and also found that talin destabilization affects the usage of different integrin subtypes and sensing of extracellular matrix proteins. Experiments with truncated forms of talin confirm the mechanosensory role of the talin R3 subdomain and exclude the possibility that the observed effects are caused by the release of talin head-rod autoinhibition. In conclusion, this study provides evidence into how the controlled talin rod domain unfolding acts as a key regulator of adhesion structure and function and consequently controls central cellular processes such as cell migration and substrate sensing.
format article
author Rolle Rahikainen
Magdaléna von Essen
Markus Schaefer
Lei Qi
Latifeh Azizi
Conor Kelly
Teemu O. Ihalainen
Bernhard Wehrle-Haller
Martin Bastmeyer
Cai Huang
Vesa P. Hytönen
author_facet Rolle Rahikainen
Magdaléna von Essen
Markus Schaefer
Lei Qi
Latifeh Azizi
Conor Kelly
Teemu O. Ihalainen
Bernhard Wehrle-Haller
Martin Bastmeyer
Cai Huang
Vesa P. Hytönen
author_sort Rolle Rahikainen
title Mechanical stability of talin rod controls cell migration and substrate sensing
title_short Mechanical stability of talin rod controls cell migration and substrate sensing
title_full Mechanical stability of talin rod controls cell migration and substrate sensing
title_fullStr Mechanical stability of talin rod controls cell migration and substrate sensing
title_full_unstemmed Mechanical stability of talin rod controls cell migration and substrate sensing
title_sort mechanical stability of talin rod controls cell migration and substrate sensing
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/33e0adba084842f4828dc8e78f0a5053
work_keys_str_mv AT rollerahikainen mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT magdalenavonessen mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT markusschaefer mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT leiqi mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT latifehazizi mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT conorkelly mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT teemuoihalainen mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT bernhardwehrlehaller mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT martinbastmeyer mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT caihuang mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
AT vesaphytonen mechanicalstabilityoftalinrodcontrolscellmigrationandsubstratesensing
_version_ 1718394268684386304