Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review
Emotion recognition has become increasingly prominent in the medical field and human-computer interaction. When people’s emotions change under external stimuli, various physiological signals of the human body will fluctuate. Electroencephalography (EEG) is closely related to brain activity, making i...
Guardado en:
Autores principales: | Jing Cai, Ruolan Xiao, Wenjie Cui, Shang Zhang, Guangda Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33e3a525e21a4865a5d5d8099c0e1427 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hierarchical Spatiotemporal Electroencephalogram Feature Learning and Emotion Recognition With Attention-Based Antagonism Neural Network
por: Pengwei Zhang, et al.
Publicado: (2021) -
Classification of EEG Signals using Fast Fourier Transform (FFT) and Adaptive Neuro Fuzzy Inference System (ANFIS)
por: Suwanto Suwanto, et al.
Publicado: (2019) -
Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
por: Yue Hua, et al.
Publicado: (2021) -
Two-Stage Recognition and beyond for Compound Facial Emotion Recognition
por: Dorota Kamińska, et al.
Publicado: (2021) -
Wise Information Technology of Med: Human Pose Recognition in Elderly Care
por: Difei Xu, et al.
Publicado: (2021)