Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
Abstract This study investigates whether coupling crop modeling and machine learning (ML) improves corn yield predictions in the US Corn Belt. The main objectives are to explore whether a hybrid approach (crop modeling + ML) would result in better predictions, investigate which combinations of hybri...
Guardado en:
Autores principales: | Mohsen Shahhosseini, Guiping Hu, Isaiah Huber, Sotirios V. Archontoulis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/33f06b500da54359bd032ea96d19cf9b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An interaction regression model for crop yield prediction
por: Javad Ansarifar, et al.
Publicado: (2021) -
A time-dependent parameter estimation framework for crop modeling
por: Faezeh Akhavizadegan, et al.
Publicado: (2021) -
Consistent negative response of US crops to high temperatures in observations and crop models
por: Bernhard Schauberger, et al.
Publicado: (2017) -
Mathematical Modelling in Crop Production to Predict Crop Yields
por: Marzhan Anuarbekovna Sadenova, et al.
Publicado: (2021) -
Influence of Organic Manures and Fertilizers on Nutrient Uptake, Yield and Quality in Cabbage-Baby Corn Cropping Sequence
por: R Srinivasan, et al.
Publicado: (2014)