Semilinear Fractional Evolution Inclusion Problem in the Frame of a Generalized Caputo Operator

In this paper, we study the existence of solutions to initial value problems for a nonlinear generalized Caputo fractional differential inclusion with Lipschitz set-valued functions. The applied fractional operator is given by the kernel kρ,s=ξρ−ξs and the derivative operator 1/ξ′ρd/dρ. The existenc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adel Lachouri, Abdelouaheb Ardjouni, Fahd Jarad, Mohammed S. Abdo
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/33f72e9eacf94e3f941d115a8962e497
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we study the existence of solutions to initial value problems for a nonlinear generalized Caputo fractional differential inclusion with Lipschitz set-valued functions. The applied fractional operator is given by the kernel kρ,s=ξρ−ξs and the derivative operator 1/ξ′ρd/dρ. The existence result is obtained via fixed point theorems due to Covitz and Nadler. Moreover, we also characterize the topological properties of the set of solutions for such inclusions. The obtained results generalize previous works in the literature, where the classical Caputo fractional derivative is considered. In the end, an example demonstrating the effectiveness of the theoretical results is presented.