Semilinear Fractional Evolution Inclusion Problem in the Frame of a Generalized Caputo Operator
In this paper, we study the existence of solutions to initial value problems for a nonlinear generalized Caputo fractional differential inclusion with Lipschitz set-valued functions. The applied fractional operator is given by the kernel kρ,s=ξρ−ξs and the derivative operator 1/ξ′ρd/dρ. The existenc...
Enregistré dans:
Auteurs principaux: | Adel Lachouri, Abdelouaheb Ardjouni, Fahd Jarad, Mohammed S. Abdo |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/33f72e9eacf94e3f941d115a8962e497 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations
par: Ardjouni,Abdelouaheb
Publié: (2021) -
On the generalized fractional snap boundary problems via G-Caputo operators: existence and stability analysis
par: Mohammad Esmael Samei, et autres
Publié: (2021) -
A fractional Gronwall inequality and the asymptotic behaviour of global solutions of Caputo fractional problems
par: Jeffrey R. L. Webb
Publié: (2021) -
Hermite–Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
par: Dong Zhang, et autres
Publié: (2021) -
Analysis of Multiterm Initial Value Problems with Caputo–Fabrizio Derivative
par: Mohammed Al-Refai, et autres
Publié: (2021)