Development of Stochastic Mathematical Models for the Prediction of Heavy Metal Content in Surface Waters Using Artificial Neural Network and Multiple Linear Regression
The principal purpose of this study is to build stochastic neuronal models, for the prediction of heavy metal, contents in the surface waters of the Oued Inaouen catchment area of the TAZA region, according to their Physico-chemical parameters; we have carried out a comparative study: the multiple l...
Guardado en:
Autores principales: | El Chaal Rachid, Aboutafail Mouley Othman |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3402d404350743ea8812a3f74a304525 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars
por: Ahad Amini Pishro, et al.
Publicado: (2021) -
Estimation of Soil Organic Carbon using Artificial Neural Network and Multiple Linear Regression Models based on Color Image Processing
por: P Ataieyan, et al.
Publicado: (2018) -
Evaluation of heat transfer mathematical models and multiple linear regression to predict the inside variables in semi-solar greenhouse
por: M Taki, et al.
Publicado: (2017) -
Housing Price Prediction Based on Multiple Linear Regression
por: Qingqi Zhang
Publicado: (2021) -
Modelling a rotating biological contactor treating heavy metal contaminated wastewater using artificial neural network
por: M. Gopi Kiran, et al.
Publicado: (2021)