Treatment selection using prototyping in latent-space with application to depression treatment
Machine-assisted treatment selection commonly follows one of two paradigms: a fully personalized paradigm which ignores any possible clustering of patients; or a sub-grouping paradigm which ignores personal differences within the identified groups. While both paradigms have shown promising results,...
Enregistré dans:
Auteurs principaux: | Akiva Kleinerman, Ariel Rosenfeld, David Benrimoh, Robert Fratila, Caitrin Armstrong, Joseph Mehltretter, Eliyahu Shneider, Amit Yaniv-Rosenfeld, Jordan Karp, Charles F. Reynolds, Gustavo Turecki, Adam Kapelner |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/340d8807035c463b98f66ee3e0a54178 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Treatment selection using prototyping in latent-space with application to depression treatment.
par: Akiva Kleinerman, et autres
Publié: (2021) -
A Latent Heat Storage System for Low-Temperature Applications: From Materials Selection to Prototype Performances
par: Didier Haillot, et autres
Publié: (2021) -
EEG p-adic quantum potential accurately identifies depression, schizophrenia and cognitive decline.
par: Oded Shor, et autres
Publié: (2021) -
Virtual and physical prototyping
Publié: (2006) -
Rapid prototyping journal
Publié: (1995)